
The elastic scattering cross sections for slow electrons incident 

on sodium and potassium are calculated using a model for the polarization 

potential which was earlier used for cesium. In all the alkalis studied, 

the low energy scattering cross sections show an extreme sensitivity to 

the exact shape of the puiarizaticm poceiithl in the reg mi =here 

comparable to the atomic radius, indicating the necessity of having an 

accurate description of the polarization term in the total scattering 

interaction potential. An attempt is made to derive the polarization 

potential applicable to the low energy collision problem, and calculations 

are made for electron - cesium atom collisions. It is found that the 
derived polarization potential has general features similar to those of 

the model. 
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The results are compared with the available experimental data, 
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; ~ i c . ~ i z l  i;i t h e  t o t a l  i - t e r a c t i o n  p o t e n t i a l  f o r  the s c a t t e r l n g  of slow 

c;ectrons by cesium atons.  The method used w a s  simLlar t o  thz: of Robinson 

z:,;ce?t i n  the  form a s s - a e d  f o r  t h e  p o i a r i z a t l x  ter-n. I n  the  f i r s i  p a r t  of 

2 

- I -  L e  ?rsser,t Taper w e  extenc! t h e  u s e  of t h i s  nodel t o  :he s c a t t e r i n g  of elec- 

:rorLs by o the r  alka19 a t o m .  We have found tha': che low energy s c a t t e r F z 0  0 

._ 
-2 :;ls second parc  of t h e  ? r e s e n t  i n v e s t i g z t i o n  we mike use of t he  

Z~;:.-;:.C~C n sde l ,  i n  which the  a t o n i c  systein I s  zssax~ed t o  p o l a r i z e  i n  response 

t o  d.5 instantaneous p o s i t i o n  of the i n c i d e n t  p a r t i c l e ,  and f i r s t  o rde r  

r . L c  - -. ;,rSation theory t o  d e r i v e  t h e  d i ? o l e  ? o l z r i z a t i o n  p o t e n t i a l  f o r  a charged 

;;-.-rLcle i n  t h e  f i e l d  of an atom. The analydls, which i s  siz.ilar t o  t h a t  used 

by Xeeh f o r  determining t h e  p o l a r i z a t i o n  of t h e  core  e l e c t r o n s  f o r  hydrogen- 7 
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like ions is then applied to the cesium atom to obtain the polarization 

potential for the electron scattering problem. 

I. Model for the Scattering of Slow Electrons from Alkali Atoms. 

A .  Nethod of Solution 

Tne elastic scatczring cross sections for potassum and sodium were 

obrained in exactly the same matter as that described in I. The model for the 

effeczive scatterln; potential consists of the Hartree potential function for 

the neutral zlkali to which a polarization term of the form 

I s  added, whereq is the experimental polarizability for the atom in question 

2nd the <ilzntity f r is the so called cut off parameter. The complete 
13 

_ I - .  LL,tezaction potential which appears in the scattering equation is then 

(1) 

where V=(z>/z is the Hartree potential function. In the present calculations 
.A 

4-7- Kartree potential V, (r) for potassium was taken from the results of 

9 
ri 

Xxcree8 and of Gibbons and Bartlett , and for sodium the potential function of 
10 Y'ock and Petrashen was used. 

The constant r was again taken as the position of the last maximum of 
0 

::.a valence electron wave function (r = 5.0 a for K, and r = 3.5 a. for 
0 0 0 

-~ - -  \ -.-, ani? the parameter f was varied over a small range near f = 1.0. 

c-rferent values of the polarizability from the literature'' were used for 

each case; "( = 36 A , 45 A 

Two 

. -  

03 03 3 - 3  
( 2 4 8 ,  326 ao) for potassium and<= 24, 27 A 

(161, 182 a',) for sodium. 



E. Results for K and Na. 

Yne total elastic scattering cross sections for K and Na were obtained 

by t5e phase shift method (neglectkg enchange) as described in I. It 

was foand that the cross sections f o r  borh &.toas were exzremely sensitive 

to the shape of the polarization pozential zs dztermked by vsrying the 

pa-aaeter f in eq. (1). This same result W ~ S  fouiid previously for Cs . 1 

func.- LA".. -- -- l o r  the atoi?. in question (Fig. i of I>. 

good agresr;.ent with the experixental r e s n l t s .  Xe will say more in the 

lzsz sec~lcr, about the conclusions which can be drawn from the use of the 

press:-t = d e l .  

8-7- .----eoretlcal D2velo~rzent of the Polcrization Potential. II. 

Xe i 7 i L i  consizer a free electron i n c i l e z t  on an unbound, stationary 

- c  a;c;:.-.-. I; 172 let r denote the position vector of the free electron and r 
f i 

L: Ll.CIL - of r,:--e of the boiind atomic electrons, then the total Hamiltonian for the 

s y s z m  can be written: 

w:-. e r e 

H = II a (7)  i H,- ( r f )  + W (r, rf) 

In this decomposition K (r) is the Xaniltonian of the unperturbed atom, a 

H , ( r )  is that of the free electron, and W ( r ,  r ) is the interaction of the 
L f  f 



- 5- 

f r e e  e l e c t r o n  w i t h  t h e  atomic e l e c t r o n s .  Considering f i r s t  t h e  case of a 

hydrogen l i k e  atom o r  ion w e  w r i t e  t h e  t o t a l  wave func t ion  y(g,Gf) f o r  

the  system i n  the form 

T - 
7-  nsre 

e l e c t r o n .  The conplete  wave func t ion  y(?, r r )  has not  been an t i sy rme t r i zed  

h e r e ,  t k s  i n  t h e  p re sec t  c a l c n l a t i o n  t h e  e f f e c t  of e l e c t r o n  exchange on t h e  

0 (?, PI) desc r ibes  t h e  t a r g e t  atom, and \li(r ) desc r ibes  t h e  f r e e  - f 
- 
1 

of Zzzt222 wave func t ions  t o  desc r ibe  t he  xriperturbed atom. The wave 

f .  c r , A L ~ A o n  ._ - f o r  t he  perturbed atomic e l e c t r c n  i s  now w r i t t e n  as 

- - ijj (9, r f>  = i f j O ( 2 )  + %(., r:) 

w?.ere b o ( r )  i s  the  unperturbed wave f u c c t i o n  f o r  t h e  atomic e l e c t r o n  and - 

. .-i ,= - *~ \.., r,> i s  f i r s t  o rde r  pe r tu rba t ion  of the o r b i t a l  e l e c t r o n  wave .- - 
L.&U 

A 

{ &) o,  7-j) = 0. 
f-.+x:ioE. i n  zddi t ior ,  w e  r e q u i r e  t h a t  

. *  
i- 

I n  t h i s  r e p r e s e n t a t i o n  t h e  Schroedinger equat ion f o r  atomic s c a t t e r i n g  

Tne p o l a r i z a t i o n  p o t e n t i a l  i n  the t o t a l  i n t e r a c t i o n  of f r e e  e l e c t r o n  

and atomic system can be obtained by perforrnicg a s c a l e r  n u l t i p l i c a t i o n  

from the  l e f t  on eq. (9) above and make use of equat ions (7) and (8 ) .  Thus 

Looking a t  t h e  l a s t  two terms on the  r i g h t  s i d e  of eq. (10) t h e  second 
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term can be i d e n t i f i e d  as t h e  mutual i n t e r a c t i o n  energy of t h e  f r e e  e l e c t r o n  

w i t h  the atomic e l e c t r o n  and t h e  t h i r d  term r e p r e s e n t s  t he  mutual i n t e r a c t i o n  

of t h e  f r e e  e l e c t r o n  with t h e  pe r tu rba t ion  of t h e  atomic wave funct ion;  t h i s  

then i s  t h e  p o l a r i z a t i o n  energy. We thus make the  i d e n t i f i c a t i o n :  

where V (r,) i s  the  p o l a r i z a t i o n  p o t e n t i a l  seen by t h e  f r e e  p a r t i c l e  due t o  

t h e  d i s t o r t i o n  of t he  t a r g e t  atorn. 
P A  

A d i f f e r e n t i a l  equat ion f o r  the dezermiixt ion of the pe r tu rba t ion ,  3: 

can be obtained from the  Schroedicgsr eq. (11) desc r ib ing  the s c a t t e r i n g  

process .  After ob ta ln ing  t h e  expressior. f o r  E f r o 3  eq. (10) and s u b s t i t u t i n g  

i n  equazian (9) and rearranging the equat ion becones: 

A t  chis p o i n t  a s i m p l i f i c a t i o n  of t h e  equat ions can be a f f e c t e d  by making 

a52 of zhe a d i a b a t i c  approximation which was Keritioned ear l ier .  The po la r i -  

zzz ion  \;f zhe d r b i t a l  e l e c t r o n  i s  considered as Caking place i n  the  s t a c i c  

,'?Id &L .. of :he s low i n c i d e n t  p a r t i c l e .  The dycaxic  equat ion above, whLch 

. e  di\3Cel^mines the d i s t o r t i o n  of t he  atomic o r b i t a l  and a l s o  t h e  e f f e c t  Of t h i s  

d i s : o r t i m  on t h e  e x t e r n a l  e l e c t r o n ,  i s  thus re;;laced wich the  s t a t i c  problem. 

f This  i s  done s i n p l y  by f i x i n g  r 

t h e  l e f t  s i d e  t o  disappear .  The 

I, 

i n  eq. ( l 2 ) ,  causing the  second term on 

equation then becomes : 
- 

We now consider  t he  i n t e r a c t i o n  W(r,r  ) as a p e r t u r b a t i o n  on t h e  unper- f 

t c rbed  system which s a t i s f i e s  eq. (7), t h e  s o l u t i o n s  of which are considered 
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known. If we consider this term small as compared to H (r) and keep only 

terms through first order in the perturbation 7 , eq. (13) is greatly 
simplified. With this approximation and the use of eq. (7), the above 

a 

equation becomes : 

[Haw - Eo J 7 (T, ;f) = go, wp>- w(F,ff)]qo (2) 

This is an inhomogeneous differential equat5on for the determination of the 

function fb (r,rf) . This was solved by Ob"Edkov4 through a variational 

teci-.idqLs for hydrogen and helium in their ground state, and analytically 

by Xeeh 

(14) 

-3; 

7 for hydrogen and hydrogen-like ions. 

B. The Hartree Approximation for a May Electron Atom 

For h rculti-eiectroIz atom an analysis soiiiewiiat similar tci t h s  Bartrce 

sz.l;zration of the atomic electron wave functions (without exchange) may be 

uscci to obtain a polarization potential. Let us replace the Hamiltonian for 

t,he cox2lete atom 

wLzh a seFarated operator of the form 

wL-zre E.(-r.) depends oniy on the coordinates of the ith electron and the 

zvzrage effect of the other electrons. The wave function for the atom is 
i 1  

. I  

i-: l.ALlarly separated in the form 

Hi Cpi = Ei C p  

?inally, the complete wave function is written 

with 



-8- 

I '  

With this approximation the first order equation (14) becomes, in the 

multielectron case, 

W'nere v 

i w =  L, w 
i 

> 
1 w =  i ) Yf-Yi 1 

This is an inhomogeneous differential equation for the perturbation x i  of 

the slngle eiectron orbital 9. of ='ne corr,lsle:c ztorn. 

potenilia1 for the complete atom is then 

The polarlzation 
1 

r 7 

Thas in fi-iis approximation the polarization potential for a many electron 

atoa rnay be calculated by considering the contribution due to each of the 

varLous orSitalg, which may be known Hartree solutions for the atom in 

qces t ion. 

rn C. i..e Radial Equations 

The i~honog~n2ous equations (14) or ( i 7 )  for the perturbation *&can be 

ssL.&zated ar,d radial equations for the various angular momentum states 

wzl ;ten. 

(1) The Dipole Approximation 

Retiimlng to eq. (17) we write 

electron we get: 

2 f -$Vi + v(ri> 
c 

i 

th it in a more explicit form. For the i 

c 
coordinate system in which the z-axis is oriented parallel 

, 

We choose a 
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t o  t h e  p o s i t i o n  v e c t o r  r 

of t h e  usual  expansion 

of t h e  f r e e  e l e c t r o n .  I n  t h i s  systemwe make use  f 

where r i s  the  lesszr and r t h e  g r e a t e r  of i' and r I n  t h i s  expansion 

t h e  te rn  i n  cos8 g i v e s  t h e  d i p o l e  p o t e n t i a l ,  t h e  (3 cos 8 -1) term g ives  

< > i f '  
2 

t h e  quadrupole a n d ' s o  on. We w i l l  drop the  quadrupole and h ighe r  o rde r  terms 

i n  t h e  e x p n s i o n  above and keep only t h e  f i r s t  two terms i n  t h e  l / r  series. i f  

I f  w e  now s u b s t i t u t e  t h e  expansion (21) f o r  t h e  l / r  term i n  the  i f  

i n t e r g r a l  on t h e  r i g h t  s i d e  of eq. (20), a l l  b u t  t h e  s p h e r i c a l l y  symmetric 

t e r m  vanish.  With t h i s  r e s u l t  t he  two t e r m s  i n  the b racke t s  on t h e  r i g h t  

s i d e  of (23) become: 

L 

f 

g m s  t o  l / r  and t h e  second term goes to 

t he  t h i r d  leaving only 5 cos9 which i s  

f h a i n g  vanished. For  small values  of r 

We no te  t h a t  f o r  l a r g e  values  of r 
, I  

f 

r> 

the  f i r s t  term i n  t h e  b racke t  above 

zero.  This  f i r s t  term then cance l s  

t h e  d i p o l e  term, the  monopole term 

t h e  monopole term does c o n t r i b u t e  

of course,  b u t  i t  goes t o  ze ro  exponen t i a l ly  f o r  l a r g e  r For  smaller 

va lues  of r 

p o t e n t i a l  of t h e  p a r t i a l l y  shielded nucleus becomes l a r g e ,  and tends t o  mask 

f '  

where t h e  monopole c o n t r i b u t i o n  i s  apprec i ab le  t h e  coulomb f '  

Chis term. We w i l l  thus  make t h e  "dipole  approximation" a t  t h i s  p o i n t  and 

cons ide r  only t h e  l as t  term i n  the  b racke t s  above, t h a t  i s ,  t h e  d i p o l e  

c o n t r i b u t i o n  i n  t h e  t o t a l  p o l a r i z a t i o n  p o t e n t i a l .  We then have t h e  equat ion 
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f o r  the per turbed wave y. i n  t h e  form: 
1 

which i s  a c t u a l l y  t h e  two equat ions 
r 

r 

i 

f 
pi(ri,rf) = - - 2 cos8 pli(ri) 

2 -$vi + z (r ) /r i  -' 

These equat ions can be solved f o r  th ;e  perturbed wave % where the 
i 

s o l u t i o n s  t o  (23) must be  jo ined  a t  t h e  boundary r .=  1 

p o i a r i z a c i o n  p o t e n t i a l  i i i ixgra la  t o  tie evaluatzd are:  

r f '  The d i p o l e  

+ rf Jr-Gi(ri) 2 case Yi(riyrf)- dr i  
r i f r 

(2) Contr ibut ions from t h e  Various Angular Momentum S t a t e s  

W e  w i l l  consider  i n d i v i d u a l l y  t h e  p e r t u r b a t i o n s  of e l e c t r o n  o r b i t a l s  

We w r i t e  t he  unperturbed wave func t ions  of angu la r  momentum ,f = 0, 1, 2.  

i n  the Zorm 

jE;, (r) = R n &  (r) (e ,@) = pnL (r) Y; (e,@) 
r 

wkere P (r) = r R (r) is  t h e  reduced r a d i a l  func t ion .  We a l s o  expand t h e  

p e r r u r b a t i o n  '%, i n  t h e  r'orm: 
n L  nJ2 



- 11- 

For convenience let us make the further variable changes 

and 2Eo = - E . 
With these variables the general differential equation (22) then becomes: 

where the cos0 term on the right side of (22)  has been written as a spherical 

harmonic and P 

for the unperturbed state in question. 

(r) 5 (e,$) are the appropriate radial and angular functions 
n l  

The index i has been dropped from 

the bound electron coordinate for convenience. 

The appropriate radial equations for the perturbation $ of an orbital 
- 
C? are obtained by performing a scalar multiplication from left on equation 
- 2  

(9) s-states 

We consider the case where the unperturbed electron is in an s-state. 

T, :his case 

2.e before mentioned scalar multiplication of equation (28) leads in this case 
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t o  t h e  s i n g l e  r a d i a l  equat ion 

The s o l u t i o n  t o  t h i s  equat ion with equat ion ( 2 6 )  and (27) g ives  

which i s  t h e  p e r t u r b a t i o n  of an s-s ta te  atomic e l e c t r o n .  

per turbed wave has  p-character ,  and thus corresponds t o  t h e  e x c i t a t i o n  of 

t he  n-s o r b i t a l  i n  ques t ion  t o  a p - o r b i t a l .  

t h e  per turbed wave i s  t h a t  of S t e r n h e i ~ e r ’ ~ ;  t h e  symbol 0 3 1  means a s ta te  

with 1 = 0 going t o  an 1 =1 perturbed s ta te .  

.f+j’ w i l l  i n d i c a t e  an o r b i t a l  whose unperturbed c h a r a c t e r  i s  1 

perturbed i n  such a way t h a t  t h e  perturbed wave 

W e  no te  t h a t  t he  

The n o t a t i o n  used t o  des igna te  

I n  gene ra l  t h e  n o t a t i o n  

being 

has  1’ c h a r a c t e r .  

The p o l a r i z a t i o n  p o t e n t i a l  as con t r ibu ted  by a n  s - e l e c t r o n  i s  obtained 

by s u b s t i t u t i n g  t h e  s o l u t i o n  (31) i n  t h e  i n t e g r a l  (24) .  

(b) p-states 

F o r  p-states w e  have R=1 with m d ,  0 ,  -1. W e  w r i t e  t he  unpert-  

urbed p-funct ion i n  t h e  form 

L r 

Csnsider f i r s t  t h e  p - s t a t e  w i th  m d .  Carrying out  t h e  same scalar mult i -  

? l i c a t i o n  as be fo re  on eq. (28) ,  t h e  r i g h t  s i d e  vanishes  un le s s  mid, 
k14, 2, t h e r e f o r e  w e  g e t  two equat ions f o r  t h e  m=O p-states.  Thus f o r  

k -0: 1- 
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The per turbed wave from t h i s  equat ion is  then 

wave has s - cha rac t e r .  S i m i l a r l y  f o r  k = 2 w e  g e t :  1 

> 

Thus f o r  a p - s t a t e  with m = 0 we a l s o  have the  p e r t u r b a t i o n  con t r ibu t ion  

This  i n d i c a t e s  a p +  d t r a n s i t i o n  s i n c e  the  per turbed wave has  d cha rac t e r .  

For  the  p - s t a t e  with m = + 1 the  s c a l a r  m u l t i p l i c a t i o n  of eq. (28) 

The r a d i a l  equat ion  f o r  t h e  

- 
y L e l d s  a con t r ibu t ion  f o r  kl = 2,  m 

pe r tu rba t ion  of a p - s t a t e  wi th  m= +1 i s  then: 

= +l. - 
- 
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I ’  

We note that this equation is identical to equation ( 3 4 )  apart from a 

constant - . 2 
d-2 

The perturbed wave for a p-orbital with m = +1 - is then written 

The conzribution to the polarization potential from p-electrons is then 

obtained by substituting the perturbations ( 3 3 )  and (35) in the polarization 

integral (24),  sumining and multiplying by two, since there are two p-electrons 

wirh m = 0, and likewise substituting the perturbation ( 3 1 )  for &i scates .- -. 
mdtiplying by four and adding this to the m 4  contribution since there are 

four electrons in the m=h states. This then gives the total polarization 

potential contributed by p-electrons. 1 

( c )  d-states 

Considering the d-states we have 1 = 2 ,  m= + +  -2,  -1, 0. The unperturbed 

wave function is written in the form 

+ (m= $2, -1, 0) (39) 

Wirh this expression for@ , the scalar multiplication of equation (28) 
0 

with Y? 

X1=2 until m,. = 0, 21, $2, corresponding to the following modes of excitation. 

(e,@) leads to equations for values of k = 1, ml = 0, $1 and 1 kl 
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The s o l u t i o n s  t o  these  equat ions,  which a r e  s i m i l a r  t o  those above, along 

wi th  the  angular  func t ions  y i e l d  the  pe r tu rba t ions  7 ( 2 , ~ ~ )  f o r .  
2-1  

m = 0, and $1, and 3; ( G , ;  ) f o r  m=O, 51 and 22.  The t o t a l  po la r i -  
2-3 

z a t i o n  p o t e n t i a l  as con t r ibu ted  by d -e l ec t rons  a r e  s i m i l a r l y  obtained by 

i n t e g r a t i n g  t h e  corresponding p o l a r i z a t i o n  i n t e g r a l s  f o r  each state and 

mul t ip ly ing  by the  number of e l e c t r o n s  i n  t h a t  state.  

The t o t a l  p o l a r i z a t i o n  p o t e n t i a l  f o r  an atomic system is  f i n a l l y  

obtained by adding toge the r  t he  con t r ibu t ions  from each of t he  s t a t e s  

considered.  

111. Resul t s  f o r  Cesium 

The formalism of t h e  previous sec tcon  f o r  t he  c a l c u l a t i o n  of t he  

p o l a r i z a t l o n  p o t e n t i a l  i n  t he  atomic s c a t t e r i n g  problem w a s  appl ied  t o  the  

c a s e  of low energy electron-cesium atom c o l l i s i o n s .  

A .  Method of So lu t ion  

L e t  us note  f i r s t  t h a t  a l l  t he  r a d i a l  equat ions  f o r  t h e  va r ious  

angular  momenthm s t a t e s w i t h  a change of v a r i a b l e  of t he  form 

can be put  i n  t h e  form 

m Here A i s  the  appropr i a t e  cons tan t  f o r  t he  r a d i a l  equat ion  i n  ques t ion .  We 
4 
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will consider the solutions to eq. 39 for the cesium atom. 

For the present calculation, the ordinary Hartree wave functions for 

cesium were used for the unperturbed system. With these functions, the 

equations (39) were solved for the perturbations 7 , and the polarization 
integrals evaluated for states appropriate for the cesium problem. In 

equation, (39) Pn& (r) is the reduced radial wave functions from the Hartree 

calculation for a given shell n, with angular momentum 1.  The quantity 
c is the eigevalue from the Hartree solution for the given n,,!? orbital and 

- z(r) is the Hartree potential function. r 

The radial equations for the perturbations % were intergrated numeri- 

1' cally using an inward method of integration starting ac a large radius s 

For this purpose equation (39) was written in a form similar to that used 

by Sternheimer . That is, we write: 14 

W'hzre the term G is given by 

IL was assumed that G is constant for r)r which means that for a given 1' 
v z l u s  of W I (rl, rf), the value at r + 6, where c i s  the increment size 3 '1 1 

32 r, can be calculated from 
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t he  va lue  of G(r ) having been previous ly  obtained from (41). 

numerical  i n t e g r a t i o n  was thus  s t a r t e d  by choosing a va lue  of W 

The 
1 

p ,J%, 4 )  

and c a l c u l a t i n g  t h e  va lue  of W s ( r , + o , r f )  4 from (42 ) .  With these  s t a r t i n g  
1 ,& 

values ,  t he  equat ion  f o r  r r was in t eg ra t ed  inward t o  r = r where t h e  

s o l u t i o n  t o  the  equat ion  f o r  r < rf was matched and the  i n t e g r a t i o n  continued 

inward t o  the  org in .  This  procedure was repeated f o r  s e v e r a l  va lues  of 

> f  f 

W l(r r ).  The c o r r e c t  s t a r t i n g  va lue  a t  t he  l a r g e  r ad ius  r i s  t h a t  

f o r  which the  s o l u t i o n  goes t o  zero  a t  the  o r i g i n .  To see  t h a t  t h i s  should 

p , e  1’ f 1 

be t h e  case,  w e  look a t  the  d i f f e r e n t  equat ion (39) f o r  r e c .  

near  t h e  o r i g i n  the  term on the  r i g h t  s i d e  goes t o  ze ro  as r.p+2 s i n c e  

W e  no te  t h a t  
A. 

near  the  o r i g i n .  Thus t h e  s o l u t i o n  t o  the  inhomo- I +  1 Pna( r )  goes as r 

geneous equat ion  (39) near  the  o r i g i n  i s  p ropor t iona l  t o  t h a t  of t he  homo- 

geneous equat ion  

$ 1  B a t  t h i s  i s  the  equat ion  which is  s a t i s f i e d  by P (r), t h a t  i s ,  t h e  Hartree 
n L  

I 
func t ion  f o r  ,f= . Thus near  t h e  o r i g i n  the  s o l u t i o n  t o  t h e  inhomogeneous 

aqilation behaves as 
I 

f o r  r + o ;  hence the  s t i p u l a t i o n  t h a t  t he  c o r r e c t  s t a r t i n g  cond i t ion  f o r  a 

l a r g e  va lue  of r should be the  value of W 

Z ~ T O  a t  r = 0. 

r ) which makes the  s o l u t i o n  p ,h (r, f 

I n  t h e  a c t u a l  c a l c u l a t i o n s  the  va lue  of Wj,;(rl ,rf)  w a s  

va r i ed  over  some range u n t i l  two va lues  were found which enclosed t h e  c o r r e c t  

valu,e. Fo r  two such va lues ,  t h e  s o l u t i o n s  W P,d(r, r f )  d iverge  slowly, one t o  
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positive values, the other to negative. The correct starting condition at 

r 

enclose the correct one. 

was then found by narrowing the interval between the two values which 1 

The integration procedure was performed with a program written for the 

IBH 7090 computer. The numerical method was a modification of the Numerov 

process €or a linear second order differential equation. 

B. Polarization Potential for Cesium 

The cesium atom, with fifty-five electrons occupying six electron 

shells, presents a very complicated system for the perturbation calculation. 

The problem is greatly simplified, however, by the fact that the inner elec- 

trons, which are very strongly bound, are perturbed only slightly by the 

field of the incident particle. Sternheimer, in his calculation of the 

polarizability of alkali ions, considered only the contribution of the 

outermost shell to the polarization potential, finding the contribution 

from the inner electrons to be negligible. In the present calculation, 

the perturbation of one of the n=4 states was determined and found to be 

cegligible as compared to that of the n=5 states and even less as compared 

to the contribution from the valence electron. Thus the contribution to the 

total polarization potential due to the inner electron was neglected in the 

present calculation; the potential function was determined by the perturb- 

&tion of the two outermost shells. 

Returning now to the notation of Section I1 for the perturbed wave 

function T2 ,d (g, %f) the following solutions were obtained. 

5-s States 

For the two 5-s  electrons the radial equation (30), for an S *P solution 

was solved by the technique described above. The solutions to this equation 

,,/ 
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in (31)’ 31 031(r, rf) for one particular value of r was then integrated 

numerically for the polarization potential (eq. 19) and multiplied by two. 

We note that the solution of these equations for some particular rf gives 

the contribution of the s-electron to the polarization potential at only 

one point, namely at the position rf from the nucleus. Thus in order to 

obtain the polarization potential for all distances of the perturbing electron 

f 

from the target atom, the radial equations must be solved and the polarization 

integrals evaluated for a wide range of values of r 

shape of the polarization potential can be determined as a function of the 

distance of the incident particle from the target. 

In this way the exact f’ 

T k i s  the equations were 

solved in every case for twenty-seven values of the free electron position 

r 

this way the value of V 

for all positions of the perturbing electron. 

tion and the perturbation 

shown in Fig. ,3. 

and the polarization potential determined at each of these points, in f ’ 
was ascertained to the desired degree of accuracy 

P 
The unperturbed radial func- 

for one position of the free electron is 
-a 

u5s -3 p 

5-p States 

There are six electrons in the 5-p state, two with m=o and four with 

The m=o states satisfy equation (33) the solution of which determines rndl. 

The LQ states also satisfy eq. 35 whose solution U in 3(*140’ 2 ’ 0  
equation ( 3 6 )  determines 7 1-;c2, a p a  d perturbation. Equation (33) 

and (35) were solved in the same manner as described above for the 5-s 

states. 

were subsequently integrated numerically to yield the polarization potential, 

The solutions to the differential equation for each value of rf 

and multiplied by two since there are two m=o electrons. 

For the p-states with m3-h equation (37) was solved similarly yielding 
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the radial perturbation U2 

Y2 (6 ,@) of equation (38) determines the perturbation 

excitation. 

+ which together with the angular function , -1 
i-1 

6-s State - 
The valence electron which is in the 6-s state, undergoes an s+ p 

perturbation similar to the 5-s state, and was treated in the same fashion, 

the only difference being that the starting values at a large radius r1 

were taken at r = 25 a 

started at r = 14 ao. 

function becomes asymtotic much farther out. Also, the polarization inte- 

grals wzre not multiplied by two in this case since there is only one 6 s  

electron. The radial wave function and the perturbation U for r -16.0 a 

are shown in Fig. 4. 

in the 6-s case, whereas all the n=5 states were 
0 

This was necessary since the valence electron wave 

190 f- 0 

For comparison the polarization potential as contributed by the valence 

electron and the total contribution from the n=5 electrons is shown along 

1~:d-i the Hartee potential function in Fig. 5. We note that in the region 

fyom r=o to r = 3a the total contribution from the n=5 shell predomiates, 

the valence electron contribution being almost negligible. And conversely, 

in the region r> 4 a the valence electron contribution is larger than that 

of the inner electrons, the latter becoming negligible rapidly for large r. 

Cne also notes that the polarization potential is negligible as compared to 

that due to the screened nuclear change for small r (r < 1) and on the other 

hand for large r (r > 6), the Hartree potential is negligible as compared 

to the polarization term. 

, 

0 

. .  
0 

The sum of the contribution from the n =-5 states and that of the 

valence electron gives the total polarization potential for the electron 

scattering problem in the present calculation, 

of the calculated polarization potential can be made by noting its asptotic 

behavior. 

An estimate of the accuracy 
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We know of course that the value of the polarization potential for large 

c 

values of r should correspond to that yielded by the dipole polarizability 

o( . Thus we can compare the value of the calculated polarization potential 

at some large r (r * 25ao) to that yielded by the experimentally determined 

value of o( . Using this comparison we find that the polarization potential 

calculated here corresponds asymtotically to a value ofo( which is Z-J 3 

times the experimental value, depending on which experimental value is used 
I I  

in the comparison. Thus the calculated polarization potential is consider- 

ably larger than it should be for large values of rf. 

unexpected however in the light of Sternheimer's work on calculating polari- 

zabilities. 

This result is not 

Following the argument given by Sternheimer we note that the 

Hartree wave functions which we have used gives less binding energy than the 

actual wave functions should give and are thus more external. An increase 

in the binding of an orbital would decrease the contribution to the polar- 

ization potential from that electron. The Hartree-Fock wave functions for 

an atom or ion have lower energies and are thus more tightly bound than 

those yielded by the Hartree solutions, hence the use of Hartree-Focks wave 

function would decrease the calculated polarization potential, a point shown 

by Sternheimer in his calculation of the polarizability of F- through the 
$ 1  / 

use of both the Hartree and Hartree-Fock solutions.15 However, even the 

Hartree-Fock solutions do not yield binding energies as low as the actual 

wave functions should give, and the corresponding polarization potential is 

still somewhat too large even in these cases, 

the polarizability which were 1-1.5 times the experimental values for ions 

whose wave functions were of the Hartree-Fock type and a value which wasd3 

times the experimental value through the use of the less accurate Hartree 

Solutions14y 15. Thus the results obtained here are consistent with these 

Sternheimer obtained values of 
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calculations in the magnitude of the polarization potential. We were, of 

course, unable to use Hartree-Fock solutions for cesium, though better 

results would be expected. 

We will make one additional observation concerning the results of the 

We present calculation as pertains to the problem of interest to us here. 

note that the use of the Hartree wave functions need not affect the shape of 

the calculated potential function as much as its magnitude for large r. 

we consider the contribution of one electron, say the valence electron, to 

the total interaction we would expect the use of the actual wave function in 

the radial equation to yield a perturbation similar to that of Fig. 4 ,  with 

If 

% 

both the unperturbed wave function and its percurbatlon , 1-.:..- AyrrA6 ou..Lewhat "em 

more internal. Looking at Fig. 5 we would then expect that the effect on the 

polarization integrals would simply be a slight change in the position of 

the maximum of the valence electron contribution, with the shape remaining 

essentially unchanged. The same argument would also hold for the other 

electrons. We can expect then that the use of the actual wave functions in 

calculating the interaction potential would not change the overall shape of 

the potential function appreciably but would reduce its magnitude somewhat 

and shift the position of the maximum in the contribution of the various 

obitals. 

cross sections which we are considering here, since we have found that the 

shape of the polarization potential is very important in the low energy 

scattering problem. In calculating electron scattering cross sections for 

the cesium atom we can then simply normalize the calculated polarization 

potential to the observed asymtotic value expected from the experimental 
6 polarizability; a treatment which is similar to that of Stone and Reitz . 

. I  

This is an important consideration in the calculation of scattering 
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C .  S c a t t e r i n g  Cross Sec t ions .  

The c a l c u l a t e d  p o l a r i z a t i o n  p o t e n t i a l  w a s  used i n  the  same method as 

descr ibed  i n  s e c t i o n  I, where t h e  t e r m V  (r) i s  i n  t h i s  case t h e  c a l c u l a t e d  

p o t e n t i a l .  The s c a t t e r i n g  c r o s s  s e c t i o n s  were obtained by the  same method 
P 

as i n  I f o r  t he  same energy reg ions .  The r e s u l t s  shown i n  F i g .  7 were 

obtained using t h e  p o l a r i z a t i o n  p o t e n t i a l  of F ig .  6 normalized t o  correspond 

t o  a va lue  of 360 a', f o r  t h e  p o l a r i z a b i l i t y q  a t  l a r g e  r. The c ross  s e c t i o n s  

w e r e  a l s o  c a l c u l a t e d  using the  unnormalized p o t e n t i a l  func t ion  and wi th  a 

normal iza t ion  corresponding t o  o(= 283ao. I n  t h i s  way t h e  dependence of 3 

t he  c r o s s  s e c t i o n  on the  magnitude of t he  p o l a r i z a t i o n  p o t e n t i a l  w a s  deter- 

-_ LuLd. - - 
unchanged by using d i f f e r e n t  va lues  of o(. 

p o l a r i z a b i l i t y  the  va lues  of t h e  c r o s s  s e c t i o n s  were increased ,  and converse ly  

It WBC folrnd that t h e  shape of t he  curve i n  F i g .  7 w a s  e s s e n t i a l l y  

For  the  l a r g e  va lue  of t he  

f o r  a smal le r  va lue ,  t he  curve was lowed f o r  a l l  i n c i d e n t  ene rg ie s .  

The c ross  s e c t i o n s  shown i n  F i g ,  7 a r e  seen t o  agree  q u i t e  w e l l  wi th  the  

experimental  va lues  of Brode f o r  ene rg ie s  g r e a t e r  than 2.5 eV.  

l i e  somewhat lower than those  of Brode, b u t  h i s  experiment included in- 

The va lues  

e l a s t i c  c o l l i s i o n s .  The ca l cu la t ed  c ros s  s e c t i o n s  a l s o  ag ree  reasonably w e l l  

w i th  t h e  ve ry  low energy va lues  measured by Chen and Raether," b u t  d i s a g r e e  

completely w i t h ' t h e  var ious  plasma experiments l7 i n  the  reg ion  from .075 

t o  .8eV. The work of Stone and Rei tz  i n  t h i s  reg ion  has  shown t h a t  exchange 

, I  

6 

e f f e c t s  are important  f o r  t hese  ene rg ie s .  Since exchange has  been neglected 

here ,  t h e  c a l c u l a t e d  c r o s s  s e c t i o n s  are expected t o  be somewhat t o o  l a r g e  i n  

t h i s  reg ion .  
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I V .  Conclusions 

From the results obtained here and in I we can conclude that 

a simple model can be used to describe low energy electron scattering 

by the alkali atoms, where the distortion of the target atom by the 

incident particle makes the major contribution to the scattering 

cross sections. From the sensitivity of the cross sections to the cut 

off parameter of the present model, or more precisely on the position 

and magnitude of the maximum of the polarization potential, we can 

appreciate the importance of knowing accurately the contributions to 

the total scattering interaction due to the distortion of the target 

' 

atom. 

order perturbation method, this distortion can be determined and 

Through the use of the adiabotic approximaiiuii and the first 

the resulting polarization potential calculated for the low energy 

scattering problem. Our results for the cesium atoms indicate that 

the inner electrons make an appreciable contribution to the polari- 

f' zation potential for small values of the free electron coordinate r 

but that the valence electron makes the major contribution in the 

important region where the Hartree potential becomes negligible. 

valence electron contribution exhibits a shape which has the same 

The 
. .  

character as that of the simple model which we have used, that is, 

the maximum occurs at the approximate position of the last maximum 

of the unperturbed valence electron wave function. The external 

nature of the Hartree wave functions, especially that of the valence 

electron, causes this maximum to lie somewhat too far out. From the 

results obtained with the model showing the sensitivity of the cross 

sections to the shape of the polarization potential in this region 

we can conclude that the use of the simple Hartree wave functions to 

represent the unperturbed atom in the perturbation calculation can lead 
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t o  considerable e r r o r  i n  the  ca l cu la t ed  cross  sect lor,^ i n  t h e  low encrgy 

reg ion .  

l i n a i i y  w e  conclude t h a t  t h e  a d i a 3 a t i c  zpproxlnat ion and thc  

peYtZrbstioi1 theory of t h i s  a n a l y s i s  when appl ied  t o  a s y s t a n  whose. 

unperturbed wave func t ions  are known wi th  sullflciezt  accuracy, can 

yLe ld  r e l i a S l e  r e s u l t s  f o r  the  problem of t h e  low ensrgy s o f t  p o t e n t i a l  

scacrering of a changed p a r t i c l e .  
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Figure  Captions 

7 F i g .  1 To ta l  e l a s t i c  s c a t t e r i n g  c ros s  s e c t i o n s  f o r  potassium 
* 
U yielded by the  p re sen t  model, compared with experimental  
% 

values  of Brode and P e r e l  e t .  a l .  ( OC =248, f r o  =4.75, 

k = & I .  

F i g .  2 T o t a l  e l a s t i c  s c a t t e r i n g  c ros s  s e c t i o n s  f o r  sodium from 

the  p re sen t  model, compared with t h e  r e s u l t  of Brode and 

of P e r e l  e t .  al. (o( =161, f r  = 3 . 6  7 5 ) .  
0 

F i g .  3 The unpertur5ed r a d i a l  5s wave func t ion  and the  pe r tu rba t ion  

5 s +  p f o r  cesicm. 

F i g .  4 The Gs wave func t ion  and rhe p e r t u r b a t i o n  6 s 3  p f o r  cesium. 

r,= 16.0a . 
A 0 

F i g .  5 %e Sartree p o t e n t i a l  func t ion  axil t h e  p o l a r i z a t i o n  p o t e n t i a l  

c x t r i b u t e d  by the n = 5 and c = 6 e l e c t r o n s  f o r  cesium. 

F i g .  6 ";le t o t a l  p o l a r i z a t i o n  potential .  V _ ( r )  and che t o t a l  i n t e r -  
LJ 

action p o t e n t i a l  V (r) + V (r)  f o r  cesium (norna l i zed ) .  
H P 

F i g .  7 Tora l  e l a s t i c  s c a t t e r i n g  c ros s  s e c t i o n s  f o r  cesium from t h e  
F, 2 r cur" u a ~ i o n  - 4- c a l c u l a t i o n  compared t o  t h e  experimental  va lues  

o f  Brode and of Chen and Raether. 

. r  


